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_____________________________________________________________

This model finds the plasma density distribution, n(x,y),
and the positive electrical potential, φ∞, between the
surface of a planar magnetron cathode and a distant,
uniform plasma. The intended application is for
parameter studies of gas discharges in the range of 1-100
mTorr, which are often used as sputtering sources. The
primary results are formulas which show how the spatial
variation of the magnetic field, B(x,y), shapes the plasma
density and influences the potential, as well as
determining the magnitude of the magnetron current
parallel to the cathode surface.

_____________________________________________________________

Introduction

Planar magnetron cathodes have arching magnetic field lines
which concentrate plasma density near the electrode surface. This
enhances the ion bombardment of the surface and the yield of
sputtered atoms. Because of the current density concentration at
these cathodes they can be used to operate gas discharge devices at
lower voltage for a given current. An essential feature is that the
vector product of the perpendicular electric field, Ey, with the
parallel component of the magnetic field, Bx, forms a closed track
with a circulating current along the cathode surface.1,2,3,4,5,6,7,8

Figure 1 shows a cross section of a pair of antiparallel linear planar
magnetron tracks, and the coordinate system convention used here.
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Figure 1: Pair of antiparallel linear magnetron tracks,
cathode surface at y=0

This model utilizes the fluid equations for both a positive ion
and electron species, and it relies on the assumption that only
electron motion is affected by the magnetic field. Figure 2 is a
schematic of a single linear magnetron track. It shows the spatial
relationship between the electric and magnetic fields, the plasma
density, the conduction current carried by ions flowing in the -y
direction, and the magnetron current produced by electron drift
along z.
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Figure 2: Schematic of linear magnetron cathode track
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The derivation of this model will be presented in detail, and
then numerical examples will be shown.

Governing Equations

A two component fluid model for electrons and positive ions in
the presence of a static, non-reactive background gas is used. Four
basic assumptions are: ions are unaffected by B, electrons cling to
lines of B and have limited mobility, the magnetic field is unaffected
by plasma density and is of the form B(x,y) = Bx(x,y) i + By(x,y) j,
there is no variation in z for any quantity. The equations of mass and
momentum conservation are:

∂ρα

∂t
 + ∇⋅ραvα = mαSα (1)

∂vα

∂t
 + vα⋅∇vα = qα

mα
(E + vα × B) − 

∇pα
ρα

 − ναN(vα − UN) (2)

for species labeled by subscript α, with mass density ρ, velocity v,
particle mass m, production rate per unit mass S, charge q, pressure
p, collision frequency with the background gas ν, and for UN = 0 as
the average velocity of the background gas. E is the electric field.

The energy equations to be used here are for an adiabatic
system with each species at its own constant temperature. This will
be discussed in detail in a later section. The equations of state
assume each species is an ideal gas:

ρα = nαmα
pα = nαkTα

pα/ρα = constant
∇pα = (Uα2 ≡ γpα/ρα) ∇ρα

Uα2 = γkTα/mα (3)

where n is the number density, T is the temperature, γ is the ratio of
specific heats, and k = 1.38054 × 10-23 Joule/°K, the Boltzmann
constant.

The electromagnetic equations are:
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curl B = µ0j + 1
c2

 
∂E

∂t
( -> 0, here) (4)

∇⋅E  = 
ρc

ε0
( -> 0, here) (5)

∂ρc

∂t
 + ∇⋅j = 0 (6)

where j is the current density, and ρc is the charge density.

Defined Quantities

The following definitions are used:

Γα = nαvα species flux vectors

jα = qαΓα species current densities

j  =  j+ + je =  e(Γ+ − Γe) net current density

ρc = e(n+ − ne) charge density

Dα = kTα/mαναN diffusion coefficients

µα = |qα/mαναN| mobility coefficients

Dα/µα = kTα/|qα| characteristic energies (eV) (7)

Steady State Equations

The governing equations in steady state are:

∇⋅Γα = Sα (8)

vα⋅∇vα
ναN

   =   qα

|qα|
 µα(E + vα × B)  −  

Dα∇nα
nα

  −  vα (9)
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curl B = µ0 j (10)

∇⋅E = e(n+ − ne)/ε0 (11)

∇⋅j = 0 (12)

Two Fluid Flux Equations

From the definition of Γα and momentum equation (9):

Γα = nα 
qα

|qα|
 µα(E + vα × B) − Dα∇nα − 

nαvα⋅∇vα
ναN

(13)

while from continuity equation (8) and current conservation (12)
S+ = Se ≡ S. For electrons and positive ions as assumed here:

Γe = -neµe(E + ve × B) − De∇ne − 
neve⋅∇ve

νeN
(14)

Γ+ = n+µ+E  − D+∇n+ − 
n+v+⋅∇v+

ν+N
(15)

∇⋅Γ+ = ∇⋅Γe = S (16)

Component Fluxes

Component fluxes in a Cartesian coordinate system centered on
a magnetron track as shown in Figures 1 and 2 are defined as
follows:

Γα  =  Γαxi  +  Γαyj  +  Γαzk

Γex = -neµeEx + µenevezBy − De
∂ne

∂x
 − ne

νeN
(vex

∂vex

∂x
 + vey

∂vex

∂y
) (17)

Γey = -neµeEy − µenevezBx − De
∂ne

∂y
 − ne

νeN
(vex

∂vey

∂x
 + vey

∂vey

∂y
) (18)
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Γez = −µene(vexBy − veyBx) − ne
νeN

(vex
∂vez

∂x
 + vey

∂vez

∂y
) (19)

Γ+x = n+µ+Ex − D+
∂n+

∂x
 − n+

ν+N
(v+x

∂v+x

∂x
 + v+y

∂v+x

∂y
) (20)

Γ+y = n+µ+Ey − D+
∂n+

∂y
 − n+

ν+N
(v+x

∂v+y

∂x
 + v+y

∂v+y

∂y
) (21)

and Γ+z = 0, as v+z and Ez are assumed zero.

Component Current Densities and Quasi-neutrality

The component current densities are found from flux equations
(17) through (21) and the definitions:

jx = e(Γ+x − Γex) jy = e(Γ+y - Γey) jz = -eΓez (22)

The plasma is assumed to have sufficient density that
electrostatic sheaths are thin, and the spatial distribution of the two
fluids coincide. This is the assumption of quasi-neutrality:

ne ≈ n+ = n

The component current densities are then found to be:

jx
e

 = n(µ+ + µe)Ex  −  nµevezBy  +  (De − D+)
∂n

∂x
  +

n
νeN

(vex
∂vex

∂x
 + vey

∂vex

∂y
)  −  n

ν+N
(v+x

∂v+x

∂x
 + v+y

∂v+x

∂y
) (23)

jy
e

 = n(µ+ + µe)Ey  +  nµevezBx  +  (De − D+)
∂n

∂y
  +

n
νeN

(vex
∂vey

∂x
 + vey

∂vey

∂y
)  −  n

ν+N
(v+x

∂v+y

∂x
 + v+y

∂v+y

∂y
) (24)
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jz
en

  =  µe(vexBy − veyBx)  +  1
νeN

(vex
∂vez

∂x
 + vey

∂vez

∂y
) (25)

Ambipolar Flow

No net current is assumed to flow parallel to the cathode
surface in the x direction: jx = 0. As a result v+x = vex = vx, which is
easily shown from definitions (7) and (22). This is ambipolar flow,
ion and electron fluids are coupled by electrostatic force and move
jointly on electron thermal energy and with ion inertia.

From equation (23) is becomes evident that:

Ex  =  − De − D+

µe + µ+

 1
n

 
∂n

∂x
  +  

µe

µe + µ+

 vezBy  +

− 1
µe + µ+

 [ 1
νeN

(vex
∂vex

∂x
 + vey

∂vex

∂y
)  −  1

ν+N
(v+x

∂v+x

∂x
 + v+y

∂v+x

∂y
) ]

(26)

and that equation (11) for the electric field has been reduced to:

∂Ex

∂x
  +  

∂Ey

∂y
  =  0 (27)

Energy Equations

Ions are assumed to be cold, and their energy equation consists
of a simple electrostatic acceleration along -y from the distant
plasma to the cathode surface. The ion energy equation will be
presented at the end of this section.

The generation and flow of heat is assumed to involve only
electrons. The general energy equation in Cartesian coordinates is
written in indicial notation as:

∂(ρe)

∂t
  +  

∂(ρevi)

∂xi

  +  
∂qi

∂xi

  +  
∂(pvi)

∂xi

  −  
∂(vjσij)

∂xi

  =  dQ
dt

(28)

for quantities defined as follows:
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e  =  u  +  v
2

2
  +  ψ total energy per unit mass,

(use of the symbol e is traditional, and
as total energy will only be used until equation (29), confusion with
the elementary charge in the definition of ψ, and in later sections is
unlikely)

u internal energy per unit mass
ψ  =  e

m
(φ∞ − φ(x))   electric potential relative to plasma at x → ∞

v  speed
ρ mass density
vi velocity components (subscripts i = x,y,z)
qi heat flux components
p pressure
σij stress tensor
xi coordinates
Q internal heat generation per unit volume.

In the interests of clarity the species subscript for the electron fluid
will be suppressed until the final form of its energy equation is
presented at equation (36).

A more specific electron energy equation is given from (28) by
using equation (1) for electron continuity, in conjunction with the
simplifying assumptions of: inviscid, σij = 0; isothermal, qi = 0; steady
flow, ∂/∂t = 0:

ρvi
∂e

∂xi

  =  − 
∂(pvi)

∂xi

  −  emS  +  dQ
dt

(29)

The electron fluid is assumed to behave as an ideal gas with constant
specific heats. Thus u = CvT, p/ρ = RT, and Cp - Cv = R, for a gas
constant R = k/m, and specific heats at constant pressure and volume
Cp and Cv respectively. With these assumptions, and the use of steady
state continuity, equation (29) simplifies to:

ρvi
∂

∂xi

(v
2

2
)  =  −(CpT + v

2

2
 + ψ)mS  −  ρvi

∂ψ

∂xi

  +  dQ
dt

(30)
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Potential ψ of the electron fluid is assumed to be purely
electrical (e.g. no gravity), and its relationship to the voltage φ(x), and
electric field E(x) is:

∇ψ  =  − e
m

∇φ  =  e
m

E (31)

The plasma source function S is modeled as:

S(x,y) = α0 n(x,y) (32)

where ionization coefficient α0 is spatially uniform and highly
dependent on electron temperature. Folding (31) and (32) into (30):

ρv ⋅ ∇(v
2

2
)  =  en[v⋅∇φ − α0(Cp

m
e

T + mv2

2e
 + φ∞ − φ)]  +  dQ

dt
(33)

where e is the elementary charge.
Assuming that electron joule heating supplies all the energy

needed to create plasma at the local thermal plus kinetic plus
potential energy, and that there are no other internal heat sources,
dQ/dt = 0, then each side of equation (33) equals zero so that:

vx
2 + vy

2 + vz
2 = ve

2  =  constant (34)

v⋅∇φ  =  α0(5kT
2e

 + mv2

2e
 + φ∞ − φ) (35)

where Cp = 5k/2m.
The lateral ambipolar diffusion velocity vx is assumed to be

negligible compared to velocities along the conduction axis y, and the
magnetron drift axis z. Also, Ex parallel to the cathode surface is
assumed negligible compared to Ey. The final form of the electron
energy equation is:

−Ey  =  
∂φ

∂y
  =  α0

vey
(ue + φ∞ − φ) (36)

 ue  ≡  5kTe

2e
 + mve

2

2e
(37)
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The ion energy equation is found by a similar development
from equation (28):

ρ+v+ ⋅ ∇(v+
2

2
 − ψ+)  =  −(v+

2

2
 − ψ+)m+S  +  dQ+

dt
(38)

v+
2

2
 − ψ+  =  0, dQ+

dt
  =  0 (39)

v+
2  =  2e

m+
(φ∞ − φ) (40)

Velocity Derivatives

From velocity magnitude relationships (34) and (40), in
conjunction with the assumption of vx = 0, the following differentials
are determined:

v+y
∂v+y

∂x
  =  eEx

m+
v+y

∂v+y

∂y
  =  

eEy

m+
vey∂vey  =  −vez∂vez

(41)

Equation (25) for jz simplifies as follows:

jz
en

  =  −µeveyBx + 
vey

νeN
 
∂vez

∂y
  =  −vez

∂vez

∂y
  =  νeN(µeBx − vez

vey
) (42)

and equation (24) for jy simplifies in the following steps:

jy
e

  =  n(µe + µ+)Ey  +  nµevezBx  +  (De − D+)
∂n

∂y
  +

− n
νeN

vez
∂vez

∂y
  −  n

ν+N
 e
m+

Ey
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jy
en

  =  (µe + µ+)Ey  +  µevezBx  +  De − D+
n

 
∂n

∂y
  +

− vez(µeBx − vez
vey

)  −  µ+Ey

jy
en

  =  µeEy  +  De − D+
n

 
∂n

∂y
  +  vez

2

vey
(43)

Equation (26) for the lateral electric field Ex simplifies to:

Ex  =  − De − D+

µe + µ+

 1
n

 
∂n

∂x
  +  

µe

µe + µ+

 vezBy (44)

Equipotentials are assumed to be purely parallel to the cathode
surface, φ(y), and Ex = 0. This assumption is supported by Langmuir
probe data.9 As a result:

vez  =  De − D+

µeBy
 1
n

 
∂n

∂x
(45)

Electron Velocities

The electron velocity components vey and vez are now
determined. By subtracting electron continuity from ion continuity,
equations (16), the following relationship is achieved:

∂v+y

∂y
  −  

∂vey

∂y
  +  

v+y − vey

n
 
∂n

∂y
  =  0 (46)

By substituting from (41) for the derivative of vey, and from ion
continuity

∂n

∂y
  =  n

v+y
(α0 − 

∂v+y

∂y
)

then (46) involves only velocities and their derivatives:
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(
vey

v+y
)
∂v+y

∂y
  +  (vez

vey
)
∂vez

∂y
  +  (1 - 

vey

v+y
)α0  =  0 (47)

By employing the relationship for Ey from (41), and
substituting for the derivative of v+y from (47):

Ey  =  m+
e

 
v+y

2

vey
 [α0(

vey

v+y
 − 1)  −  vez

vey
 
∂vez

∂y
] (48)

By substituting φ for Ey by equation (31), using the negative root of
(40) for v+y, and using (42) for the derivative of vez, equation (48)
becomes:

−1
2(φ∞ − φ)

 
dφ
dy

  +  α0

2e
m+

(φ∞ − φ)
  =  −1

vey
 [α0 + νeN

vez
vey

(µeBx − vez
vey

)] (49)

The left hand side of (49) only depends on coordinate y, therefore
the right hand side must either be a function of y only, or a constant.

The ratio ξ = vez/vey is found in an approximate manner by
setting the ∂/∂x of the right hand side of (49) to zero, and assuming
the ratio α0/νeN is small. In conjunction with (34) the results for
these velocity components are:

vez
vey

  =  µeBx vey  =  ve

1 + µe
2Bx

2
vez  =  

veµeBx

1 + µe
2Bx

2
(50)

Note that: 1 + µe
2Bx

2   =  1 + ωcex
2

νeN
2

where ωcex is the electron cyclotron frequency based on Bx.

Potential Profile

Velocity components vey and vez vary negligibly with x in the
region along the y axis where plasma is concentrated and Bx is the
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major magnetic field component. A potential profile is derived from
electron energy equation (36), now approximated as follows:

−Ey(y)  =  
dφ(y)

dy
  =  α0

vey(0,y)
(ue + φ∞ − φ(y)) (51)

This is integrated to:

φ(y)  =  (ue + φ∞)F(y)

dφ
dy

  =  
α0(ue + φ∞)

vey(0,y)
(1 − F(y))

F(y)  = 
⌠

⌡
  α0

vey(0,η)
 e⌠⌡

α0
vey(0,ξ)

dξ

y

η

 dη

0

y

(52)

Define distance y∞ as the location where φ(y∞) = φ∞, and beyond
which plasma is unmagnetized. Determine y∞ by the criteria:

µeBx(0,y∞)  =  1 (53)

By equation (50), vey(0,y∞) = ve/√2, and from (51) and (52):

−Ey(y∞)  =  2α0ue
ve

  =  2α0
ve

(ue + φ∞)(1 − F(y∞))

which leads to the expression for the plasma potential at y∞:

φ∞  =  ue( 1
1 - F(y∞)

  −  1) (54)

The potential profile will be completely known once the electron
drift velocity, ve, is determined.
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Electron Drift Velocity

At y → ∞, uniform unmagnetized plasma has ∂n/∂y → 0, vez → 0,
and equation (43) for jy collapses to jy → j∞ = -en∞ve = en∞µeEy∞. Here
ve is the constant electron drift velocity conveying the circuit current
between the anode and the magnetron region, and Ey∞ is the constant
electric field in this positive column. From (51) for Ey it is evident
that:

Ey∞  =  − ve
µe

  =  
j∞

en∞µe
  =  − α0ue

ve
  =  − α0

ve
(5kTe

2e
 + meve

2

2e
) (55)

Solving (55) for ve produces:

ve
2  =  

5kTe
me

2νeN
α0

  −  1
  =  ( j∞

en∞
)2

(56)

Independent parameters are seen to be Te, νeN, α0, and either j∞ or n∞

(both νeN and α0 depend on Te as well as gas molecule properties).
At this point both φ(y) and Ey(y) are considered known. Since

Ez = Ex = 0, and ∇⋅E = 0, then an exact solution requires dEy/dy = 0.
This condition is not met, the disparity being greatest at the cathode
surface and diminishing to insignificance at y → ∞. This discrepancy
is a consequence of the absence of electrostatic sheaths in this model.

Plasma Density Profile

Equating expressions (45) and (50) for vez yields an expression
for plasma density:

1
n

 
∂n

∂x
   =   ve

De − D+

 
µe

2BxBy

1 + µe
2Bx

2
(57)

This is integrated along x at constant y between coordinates -xp and
+xp which are centered on the magnets flanking the magnetron track:
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n(x,y)  =  n(-xp,y) exp[ ve

De − D+

⌠
⌡

 
µe

2BxBy

1 + µe
2Bx

2
 dx

-xp

x

 ] (58)

Given n(-xp,y), the density profile above the magnet pole, then n(x,y)
is determined. Note that the choice of magnet centers ±xp as the
lateral limits of investigation is arbitrary and simply a matter of
convenience. Equation (58) is relabeled to simplify later algebra:

n(x,y)  =  n0(y) L(x,y) n0(y)  ≡  n(-xp,y) (59)

and L(x,y) is the exponential function in (58). From (59):

∂n

∂y
  =  L

∂n0

∂y
  +  n0

∂L

∂y
(60)

Equation (43) for jy is now revisited and expressions (59) and
(60) are introduced:

jy  =  en0LµeEy  +  e(De - D+)[L
dn0

dy
 + n0

∂L

∂y
]  +  en0L vez

2

vey

jy  =  en0[L(µeEy + vez
2

vey
) + (De - D+)

∂L

∂y
]   +   e(De - D+)Ldn0

dy
(61)

The conservation of the circuit current I0 is given by an area integral
of equation (61) for jy, and this provides an expression for the
determination of n0(y):

I0  ≡ ∫   
z ∫ jy dx

-xp

+xp

 dz  =  ∆ ∫z jy dx
-xp

+xp

  =  ∆z 2xp j∞ (62)

I0  =  b(y)n0  +  a(y)dn0

dy
(63)
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a(y)  ≡  ∆z e(De −  D+ ∫) L(x,y) dx
-xp

+xp

(64)

b(y)  ≡  ∆ ⌠
⌡

z e [ L⋅(µeEy + vez
2

vey
)  +  (De − D+)

∂L

∂y
 ] dx

-xp

+xp

(65)

and ∆z is the length of the magnetron track which intercepts total
circuit current I0. Equation (63) is integrated for n0(y), and for
convenience these functions are defined:

H(y)  ≡  b(y)/a(y) K(y)  ≡  I0/a(y) (66)

Note from K(y) that circuit current per unit magnetron track length,
I0/∆z, enters as a parameter to n(x,y) rather than any absolute
current or track length. The final form of n0(y) is:

n0(y)  =  e ∫− H(η) dη
0

y

⋅[n0(0)  + 
⌠
⌡

  K(η)⋅e∫ H(ξ) dξ
0

η

 dη

0

y

]

n0(0)  =  n∞e∫ H(η) dη
0

y∞

  − 
⌠
⌡

  K(η)⋅e∫ H(ξ) dξ
0

η

 dη

0

y∞

(67)

and n(x,y) = n0(y)L(x,y) for L(x,y) as defined by (58) and (59), and
n0(y) as given by (67). Also note that for positive current in the -y
direction that I0, j∞, and K are negative.

Magnetron Current

The magnetron current along -z is:

IM  = ∫   
0

y∞

∫ −e n(x,y) vez(x,y) dx
-xp

+xp

 dy (68)
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Summary of Analytical Results:

ve
2  =  

5kTe
me

2νeN
α0

  −  1
  =  ( j∞

en∞
)2

(56)

vez
vey

  =  µeBx vey  =  ve

1 + µe
2Bx

2
vez  =  

veµeBx

1 + µe
2Bx

2
(50)

µeBx(0,y∞)  =  1 (53)

F(y)  = 
⌠

⌡
  α0

vey(0,η)
 e⌠⌡

α0
vey(0,ξ)

dξ

y

η

 dη

0

y

(52)

ue  ≡  5kTe

2e
 + mve

2

2e
(37)

φ∞  =  ue( 1
1 - F(y∞)

  −  1) (54)

φ(y)  =  (ue + φ∞)F(y) (52)

dφ
dy

  =  
α0(ue + φ∞)

vey(0,y)
(1 − F(y)) =  −Ey (52)

v+
2  =  2e

m+
(φ∞ − φ) (40)

n(x,y)  ≡  n0(y) L(x,y) n0(y)  ≡  n(-xp,y) (59)

n(x,y)  =  n(-xp,y) exp[ ve

De − D+

⌠
⌡

 
µe

2BxBy

1 + µe
2Bx

2
 dx

-xp

x

 ] (58)
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a(y)  ≡  ∆z e(De −  D+ ∫) L(x,y) dx
-xp

+xp

(64)

b(y)  ≡  ∆ ⌠
⌡

z e [ L⋅(µeEy + vez
2

vey
)  +  (De − D+)

∂L

∂y
 ] dx

-xp

+xp

(65)

H(y)  ≡  b(y)/a(y) K(y)  ≡  I0/a(y) (66)

n0(0)  =  n∞e∫ H(η) dη
0

y∞

  − 
⌠
⌡

  K(η)⋅e∫ H(ξ) dξ
0

η

 dη

0

y∞

(67)

n0(y)  =  e ∫− H(η) dη
0

y

⋅[n0(0)  + 
⌠
⌡

  K(η)⋅e∫ H(ξ) dξ
0

η

 dη

0

y

] (67)

IM  = ∫   
0

y∞

∫ −e n(x,y) vez(x,y) dx
-xp

+xp

 dy (68)

An Example

Application of the model is illustrated with the following
example drawn from experimental results published by Wendt and
Lieberman.5 A circular planar magnetron with Bx(0,0) = 171 Gauss in
a 5 cm wide, 31.4 cm long track, intercepts 0.5 Amps of discharge
current at 520 Volts in 5 mTorr of argon. Measurements of the
current density jy(x,0) at the cathode surface are fitted by a gaussian
in coordinate x with a FWHM of 1.875 cm and a peak of 0.14 A/cm2.

An example was calculated for p = 5 mTorr
(N = 1.77 × 1014 cm-3), argon (Z = 39.948 AMU ions),
I0/∆z = -1.59 Amp/m ( = -0.5 A/0.314 m), with Bx(0,0) = 178 Gauss.
Parameters were selected as follows: Te = 5 eV, νeN = 1.24 × 107 s-1,
α0 = 7.09 × 104 s-1, j∞ = -0.00318 A/cm2. The diffusion and mobility
coefficients used were: De = 7.08 × 104 m2/s, D+ = 41.4 m2/s,
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µe = 1.42 × 104 m2/s-Volt, µ+ = 331 m2/s-Volt.
Results are: n∞ = 1.77 × 109 cm-3, ve = 1.12 × 107 cm/s,

y∞ = 22.4 cm, ue = 12.5 eV, φ∞ = 522 Volts, IM = -0.773 A, IM/I0 = 1.55,
n(0,0) = 2.28 × 1011 cm-3, jy(0,0) = -0.185 A/cm2.

Figures 3, 4, 5, 6, 7, and 8 show spatial distributions as one of:
1) graphs along x between -xp and +xp at the cathode surface (y = 0),
2) surface plots for -xp ≤ x ≤ +xp, y ≤ y∞, oriented as is Figure 2, and
3) graphs along y from 0 to y∞, at mid-track (x = 0).

Parameter Studies

The value of an accurate fluid model would be the ability to
design magnetron cathodes with desired attributes, by specifying
both the magnet strength and geometry, and the gas properties. A
magnetron cathode could be designed for a higher sputtering yield at
lower voltage by narrowing the density distribution, or a broad
density distribution could be selected for a uniform erosion pattern
and long cathode life. An example of a broad density distribution is
shown in Figure 2.

A sample parameter study is the calculation of φ∞ where the
only parameter varied is the angle of tilt, θ, of the magnets flanking
the magnetron track. This angle is defined as positive for outward
tilt, and negative for inward tilt. Figure 1 shows magnetron tracks
with one side tilted inward -15°.

These calculations model a single 2 cm wide track like that on
the left in Figure 1, but with both magnets tilted with mirror
symmetry. Conditions are: a 35 mTorr mixture of 1% O2 in helium,
Te = 6 eV (He+ and O+ in equal numbers), I0/∆z = −2000 A/m,
Bx(0,0) = 840 Gauss at θ = 0°. Calculations show that φ∞ decreases
with inward tilt, and increases to a maximum then decreases with
outward tilt. The influence of θ on voltage is shown in Figure 9.
Experiments are being planned to verify this model.

This work was performed under the auspices of the U.S. DOE by
LLNL under contract no. W-7405-Eng-48.
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Figure 3: Surface distributions across magnetron track
Bx, By, n, and jy at y = 0, and jy from experiment in reference [5]
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Figure 9: Effect of magnet tilt angle on voltage
p = 35 mTorr, He/O2 = 0.99/0.01, xp = 0.95 cm,
Bx(0,0) = 840 Gauss @ θ = 0°, I0/∆z = −2000 A/m, Te = 6 eV


